FURTHER PHLOROGLUCINOL DERIVATIVES IN THE FRUITS OF MALLOTUS JAPONICUS

Isao Kouno, Nobuharu Shigematsu, Miyuki Iwagami and Nobusuke Kawano*

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi, Nagasaki 852, Japan

(Received 24 April 1984)

Key Word Index—Mallotus japonicus; Euphorbiaceae; 2,6-dihydroxy-3-methyl-4-methoxyacetophenone; 3-(3,3-dimethylallyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-phlorobutyrophenone; 3-(3,3-dimethylallyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-phloroisobutyrophenone.

Abstract—Two new rottlerin-like phloroglucinol derivatives were detected from the fruits of *Mallotus japonicus* and identified as 3-(3,3-dimethylallyl)-5-(3-acetyl-2,4-dihydroxy-5-methyl-6-methoxybenzyl)-phlorobutyrophenone and -phloroisobutyrophenone by spectral studies. 2,6-Dihydroxy-3-methyl-4-methoxyacetophenone was also isolated.

Recently, we reported [1] two new rottlerin-like compounds, A and B, from the fruits of Mallotus japonicus. Further studies on the same fruits have now added two more compounds, C and D. Compound C was identified as 2,6-dihydroxy-3-methyl 4-methoxyacetophenone [2], and is a moiety of compound A. The ¹HNMR and ¹³C NMR spectra (Tables 1 and 2) of compound D are quite similar to those of A except for some signals due to acyl groups. The mass spectrum of D showed a molecular ion of m/z 472, 28 more than A, suggesting two more carbons than A. The NMR signals due to the acyl proton and carbons (Tables 1 and 2) indicated that compound D was still a mixture. However, it was difficult to isolate the pure components from D itself. The pentaacetate of D could be separated by HPLC to give two pentaacetates, Da and Db. The ¹H NMR data of the two acetates are also given in Table 1, showing that the structure of Da bears a propyl ketone group and Db an isopropyl ketone group instead of one of two acetyl groups of A. The proton signals of the propyl and isopropyl groups were confirmed by 1 H decoupling techniques to each other. The 13 C NMR spectral data (Table 2) are also consistent with the structures. Since the mass spectrum of D showed strong signals of m/z 195 and 209, similar to the case of A, a propyl or an isopropyl group must be located on the phloroglucinol nucleus which bears the isopentenyl group.

EXPERIMENTAL

The air-dried capsules (without seeds, 1.4 kg) of M. japonicus were extracted twice with H_2O overnight to remove H_2O -soluble ingredients and washed with H_2O . The air-dried material was then extracted with MeOH at room temp. and the MeOH filtrate was concd to give a ppt. (27 g, compound A). The filtrate separated from A was evapd to give a dry extract (164 g), 25 g of which was dissolved in H_2O and purified on a Sephadex LH-20

*To whom correspondence should be addressed.

Table 1. ¹H NMR spectral data of compounds Da and Db (CDCl₃)

Assigned protons	Da	Db	Da acetate	Db acetate
Me (on ring)	2.12	2.12	2.06	2.07
Ac (on ring)	2.72	2.72	2.38	2.36
OMe	3.97	3.97	3.59	3.59
CH ₂ (between rings)	3.73	3.73	3.69	3.69
CH ₂ (in side chain)	3.39	3.39	3.07	3.06
(2H, br d)	(J = 7.5 H)	·lz)	(J = 5.7 H)	z)
CH (in side chain)	5.18	5.18	4.96	4.98
Me (in side chain)	1.79	1.79	1.67 (6H, s)	1.65
	1.84	1.84		1.67
Me (in acyl group)	0.99 (3H)	1.18 (6H)	0.92 (3H)	1.10 (6H)
, , , , , , , , , , , , , , , , , , , ,	$(t, J = 7.5 \mathrm{Hz})$	(d, J = 7.1 Hz)	(t, J = 7.9 Hz)	(d, J = 6.8 Hz)
CH ₂ (in acyl group)	1.70 m		1.62 m	
	3.07 t (J = 7.5 Hz))	2.62 t (J = 7.9 Hz)	:)
CH (in acyl group)	,	3.95 m		3.50 m

Short Reports 621

Table 2. ¹³C NMR spectral data of compounds A, Da and Db (in ppm)

Assigned carbons	A	Da	Db
Me (on ring)	8.8	8.8	8.8
Me (in acetyl)	33.6	33.7	33.7
co	204.3	205.5	205.5
	205.4	207.0	207.0
OMe	61.8	61.8	61.8
CH ₂ (between rings)	16.9	17.0	17.0
Me (in side chain)	17.9	18.0	18.0
	25.8	25.8	25.8
CH ₂ (in side chain)	22.1	22.1	22.1
CH (in side chain)	121.3	121.4	121.4
C (in side chain)	136.9	136.9	136.9
Me (in acyl group)	32.6	14.0	18.0
, , , , , , , , , , , , , , , , , , , ,			19.3
CH ₂ and CH		17.0 t	39.2 d
(in acyl group)		45.8 t	

column (MeOH) followed by repeated CC on silica gel (hexane-EtOAc, 3:2) to afford compounds C (15.4 mg) and D (274 mg).

Compound C. Yellow needles from CHCl₃, mp 200–201° (uncorr.). MS m/z: 196 [M]⁺ and 181; ¹H NMR (CDCl₃): δ 2.01 (3H, s, Me), 2.68 (3H, s, Ac), 3.83 (3H, s, OMe), 5.95 (1H, s), 9.35 (1H, br s, OH), and 9.70 (1H, br s, OH). It was identical (mmp, IR and ¹H NMR) with an authentic sample of 2,6-dihydroxy-3-methyl-4-methoxyacetophenone.

Compound D. Yellow needles from hexane–EtOAc, mp 157–158° (uncorr.). MS m/z: 472 [M]⁺, 417, 277, 209 and 195; IR $v_{\text{max}}^{\text{nujol}}$ cm⁻¹: 3250 (OH), 1625 sh (CO) and 1608 (CO); ¹H NMR and ¹³C NMR see Tables 1 and 2; the integrated areas of the two methyl signals at 0.99 (3H, t) and 1.18 (6H, d) ppm are almost the same, indicating a mixture of Da and Db (2:1).

Pentaacetate of D. D (30 mg) was acetylated with Ac_2O (1 ml) and pyridine (1 ml) at room temp. for 1 hr. After usual treatment, the resulting products were purified by HPLC (Finepak SIL column, 4.6 mm i.d. \times 250 mm, at a flow rate of 1 ml CHCl₃/min)

A $R = CH_2CH = CMe_2$ B $R = CH_2CHOHC(Me) = CH_2$

Da $R = CH_2CH_2Me$ Db $R = CHMe_2$

to give Da acetate (10 mg, t_R 9.5 mm) and Db acetate (4 mg, t_R 11.5 min). MS m/z: 682 [M]⁺; ¹H NMR: see Table 1.

Acknowledgement—We wish to thank Professor S. Matsuura, Gifu Pharmaceutical College, for an authentic sample of 2,6-dihydroxy-3-methyl-4-methoxyacetophenone.

REFERENCES

- Shigematsu, N., Kouno, I. and Kawano, N. (1983) Phytochemistry 22, 323.
- 2. Matsuura, S. (1957) Yakugaku Zasshi 77, 302.